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ABSTRACT 33 

Spatio-temporal modeling estimates a species distribution function that represents variation in population density 34 

over space and time. Recent studies show that the approach may precisely identify spatial hotspots in species 35 

distribution, but have not addressed whether seasonal hotspots are identifiable using commonly available fishery 36 

data.  In this study, we analysed the seasonal spatio-temporal distribution of pelagic sharks in the western and 37 

central North Pacific using fishery catch rates and a generalized linear mixed model with spatio-temporal effects. 38 

Different spatial distribution patterns were observed between two shark species. The hotspots of shortfin mako 39 

(SFM) appeared in the vicinity of the coastal and offshore waters of Japan and the Kuroshio-Oyashio transition 40 

zone (TZ), while the hotspots of blue shark (BSH) were widely distributed in the areas from the TZ to the waters of 41 

the Emperor Seamount Chain. SFM distribution changes seasonally with clear north-south movement, which 42 

follows higher sea surface temperatures (SST).  However, preferred spring and summer water temperature was still 43 

colder than those in fall and winter, but not as cold as for BSH, which did not show seasonal north-south 44 

movement.  BSH exhibits seasonal east-west movement apparently unrelated to temperature. The spatial fishing 45 

effort by season generally follows the seasonal movement of temperature possibly making SFM more vulnerable 46 

to the fishery than BSH. These findings could be used to reduce the capture risk of bycatch sharks and to better 47 

manage the spatial distribution of fishing for targeted sharks.  48 

 49 

KEYWORDS: blue shark, hotspots, shortfin mako, spatio-temporal distribution, spatio-temporal model, template 50 

model builder 51 
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 53 

INTRODUCTION 54 

Spatio-temporal patterns of areas of high fish density (also called hotspots) have been estimated using 55 

fishery-dependent data and distribution models (Su et al., 2011; Chang et al., 2012; Cambie et al., 2013; Cosandey-56 

Godin et al., 2014; Yasuda et al., 2014; Ward et al., 2015; Thorson et al., 2016). Distribution models linked to 57 

environmental factors, in particular, sea surface temperature (SST), have demonstrated the importance of  the role 58 

that the environment  plays in determining spatial patterns (Felipe et al., 2011; Eriksen et al., 2012; Howell and 59 

Auster, 2012; Siders et al., 2013). A growing body of evidence exists that links shifts in distribution to temperature 60 

increases (e.g. climate change) (Perry et al., 2005; Kishi et al., 2009; Cheung et al., 2010; Kishi et al., 2010; 61 

Cheung et al., 2013; Ito et al., 2013; Yoon et al., 2015). Species temperature preferences have been attributed to 62 

higher survival and reproductive success (Lam et al., 2008). 63 

Species distribution models estimate a distribution function which can be linked to environmental 64 

information to provide information on habitat. An understanding of the spatial distribution of a species and any 65 

potential environmental drivers can provide the scientific basis for habitat protection and fishery management that 66 

goes beyond simple catch limits (Chang et al., 2012; Ward et al., 2015).  Extension of simple spatial models to 67 

include spatio-temporal modelling allows for estimation of the temporal variation in a population range and density. 68 

Spatial-temporal models can be used to estimate population abundance indices using formal statistical tools such as 69 

likelihood functions and sampling designs (Petitgas, 1998; Bez, 2002; Nishida and Chen, 2004; Roa-Ureta and 70 

Niklitschek, 2007; Kristensen et al., 2014; Petitgas et al.

 Spatio-temporal considerations are especially important for pelagic sharks because they often exhibit 77 

spatial patterns in size and age (Nakano, 1994; Nakano and Seki, 2003). These patterns arise from differences in the 78 

spatial distribution of different cohorts, perhaps arising from the biological partitioning of available habitat. Such 79 

segregation is thought to reduce intraspecific cannibalism and competition (Nakano, 1994). Shortfin mako (SFM) 80 

(Isurus oxyrinchus) and blue shark (BSH) (Prionace glauca) are widely caught in the North Pacific (Hiraoka et al., 81 

2016; Ohshimo et al., 2016). Juveniles and subadults of these species (mainly 60-240 cm pre-caudal length 82 

, 2014; Thorson et al., 2015b, c). Recent studies (Shelton et 71 

al., 2014; Thorson et al., 2015b) show that the approach may yield more precise, biologically reasonable, and 72 

interpretable estimates of abundance than commonly used methods such as a generalized linear model (GLM; 73 

McCullagh and Nelder, 1989) and spatially stratified generalized linear mixed model (GLMMs; Stroup, 2012). In 74 

addition, spatial-temporal models may reduce bias associated with sample selection and fill in the spatial gaps 75 

associated with fishery-dependent data (Walter et al., 2014; Thorson et al., 2016).  76 
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(PCL)/0-20 years old for SFM and 60-160 cm PCL/0-6 years old for BSH) are primarily caught by Japanese 83 

commercial shallow-set longliners in the western and central North Pacific. The spatial distributions of these 84 

commercial fisheries change seasonally corresponding to the seasonal movement of the target species, primarily 85 

swordfish (Xiphias gladius) (Ishimura and Bailey, 2013; Hiraoka et al., 2016). Although BSH is occasionally also 86 

targeted, SFM is exclusively a non-target bycatch species. In the North Pacific, the standardized catch rates of BSH 87 

are higher than those of SFM (Clarke et al., 2013), indicating that either the population size of BSH is larger than 88 

that of SFM or the SFM is less likely to be caught in commercial fishing gear. The commercial fishery data covers 89 

a wide range of areas (21-45°N and 135°E-180°) and seasons, providing enough information to estimate seasonal 90 

changes in the species distribution function for juveniles and sub-adults of SFM and BSH in the western and central 91 

North Pacific. 92 

Previous studies (Hiraoka et al., 2016; Ohshimo et al., 2016) have attempted to standardize CPUE of BSH 93 

and SFM using the commercial fisheries data. Hiraoka et al. (2016) and Ohshimo et al. (2016) used standard 94 

methods such as GLM or generalized additive model (GAM; Wood, 2006). Recent developments in spatio-95 

temporal modelling, such as those proposed by Thorson et al. (2015b), may provide an improvement over 96 

conventional time-series and spatially stratified models because it estimates the density in unsampled areas by 97 

imputation (Carruthers et al., 2011). Accounting for unsampled stations or providing more information to poorly 98 

sampled areas may help reduce biases caused by the spatial and temporal heterogeneity of both fish and fishery. 99 

Spatio-temporal modelling may also improve the proportionality between CPUE and true population abundance 100 

by allowing for proper areas weighting of the index rather than data weighing or ad hoc area weighing that are 101 

common in typical GLM CPUE analyses. 102 

 In this study, we sought to answer the following questions: (1) what is the spatial distribution of SFM and 103 

BSH, and does it vary predictably among seasons?; (2) is the spatial distribution associated with seasonal changes 104 

in SST? (does temperature explain seasonal variation in distribution, or is there a substantial component of seasonal 105 

distribution shift that is unexplained by temperature?); and (3) are seasonal patterns stable enough to recommend 106 

spatial management that changes among seasons to protect bycatch shark species? We addressed these questions 107 

by applying a spatio-temporal regression approach using a generalized linear mixed model to generate spatial maps 108 

of the distribution of catch rates and to fill in spatial gaps of the fishery-dependent catch rate. We then identified 109 

potential hotspots of the pelagic sharks in the western and central North Pacific Ocean and compared the spatio-110 

temporal distributions of targeted and non-targeted sharks with SST. 111 

 112 
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MATERIALS AND METHODS  113 

Data sources 114 

The available data covered wide areas of the western and central North Pacific (Fig. 1). The SST in these areas 115 

ranged between 0°C and 30°C (see https://podaac.jpl.nasa.gov /dataset/NCDC-L4LRblend-GLOB-AVHRR_OI, 116 

accessed 28 Jan. 2017).  The original SST data has a resolution of 0.25 × 0.25 degree square per day. The data were 117 

averaged by year and three-month quarters with a resolution of 1 × 1 degree square.  The region of the western and 118 

central North Pacific was broadly defined as the Oyashio (cold water) Current, the Kuroshio (warm water) Current, 119 

the Kuroshio-Oyashio transition zone (TZ) and Mixed water regions (Fig. 1), which is one of the main oceanic 120 

features of the North Pacific (Roden, 1991; Yasuda et al., 1996, 2000; Yoshinari et al., 2001; Inoue et al., 2003; 121 

Yasuda, 2003).  The Kuroshio and Oyashio currents meet in the Pacific east of Japan and a complex oceanic 122 

feature associated with warm and cold fronts and eddies of various scale appears in the TZ and Mixed water region 123 

(e.g., Reid, 1965; Kawai, 1972; Hasunuma, 1978).  The western North Pacific therefore provides an important 124 

habitat for many species of epipelagic nektonic fishes and squids that are highly migratory between subtropical and 125 

subarctic areas (Pearcy, 1991). The Emperor Seamount Chain is located in the central North Pacific (30–55°N and 126 

approximately 170°E), representing another oceanic feature that has a high potential for biological resources due to 127 

the interaction of ocean currents and complex topography (Boehlert, 1986, 1988). Four seasons (quarters (Q) 1 to 4) 128 

were defined as follows: Q1 was spring from Jan. to Mar.; Q2 was summer from Apr. to Jun.; Q3 was fall from Jul. 129 

to Sep.; and Q4 was winter from Oct. to Dec..  130 

We analyzed catch and effort data of Japanese shallow-set longliners operating in the North Pacific (north 131 

of the equator) from 2010 to 2014 to estimate the seasonal distribution of pelagic sharks in recent years. Data from 132 

these years can provide the estimates of spatio-temporal distribution for the species. The set-by-set data used in this 133 

study included information on species of sharks, catch number, amount of effort (number of hooks), number of 134 

branch lines between floats (hooks between floats: HBF) as a proxy for gear configuration, and location (latitude 135 

and longitude) of set, with a resolution of 1 × 1 degree square. Only the shallow-set data were used in the analysis. 136 

The shallow-set data is used because fishermen change the depth of the gear to change the target species, and is 137 

identified by the number of HBF, which determines the fishing depth (Nakano et al., 1997). We defined the 138 

shallow-set fishery by the use of a small number of HBF (3-5 hooks). The hooks of the regular longline gear are 139 

estimated to hang at the depth around 50 to 120 m (Suzuki et al., 1977). 140 

 141 

Spatio-temporal model  142 
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We developed a model that accounts for both seasonal and interannual variability in the distribution of shark 143 

species in the Pacific Ocean, while accounting for differences in sampling intensity between locations, seasons and 144 

years. We also included linear and quadratic terms for SST as spatial covariates which were assumed to impact 145 

density. We used a hierarchical spatio-temporal model for this task, so that we could explicitly decompose variance 146 

into components representing among-year and within-year variation. We then used the model to predict density at 147 

unsampled locations and times, to provide a best-estimate of the distribution of species. Spatio-temporal modelling 148 

of CPUE data assumes that species density at nearby locations should have similar density estimates during each 149 

time interval. The correlation between statistical stations (latitude and longitude) in a given time interval (governed 150 

by fixed effects that are estimated from the data) was then used to estimate catch rates in a period (year and quarter) 151 

for all stations, including stations that do not have data in a given period. We then compared these predictions with 152 

temperature data for each species, to evaluate whether each species has temperature preferences and also what 153 

regions of the Pacific each species prefers during each season.  Although previous analyses have used fishery-154 

dependent catch rate data for species distribution modelling (e.g., Thorson et al., 2016), this study is the first in our 155 

knowledge to model both within- and among-year (i.e., seasonal and interannual) shifts in distribution using spatio-156 

temporal models for fishery dependent data.   157 

 158 

Model description 159 

The spatio-temporal model estimated the density d (s, t, q) in each station s (latitude and longitude with a resolution 160 

of 1 × 1 degree square), year-quarter t (signifying a three-month quarter, where t = 1 in signifies Q1 2010 and t = 20 161 

signifies Q4 2014), and quarter q (signifying a three-month quarter, where q = 1 in signifies Q1 and q = 4 in 162 

signifies Q4). We modelled the temporal variation at the scale of 3-month intervals, given that both species showed 163 

strong variable distributions among seasons and years. Each station, year-quarter, and quarter had the density: 164 �(�, �, �) = exp ��0(�, �) + �(�) + �(�, �) + �(�, �) + ∑ ����(�, �)���=1 �,  (1) 165 

where �0(�, �) represents temporal variation (the intercept for each year-quarter t and quarter �),  �(�) represents 166 

spatial variation (the average density in station s relative to the average station),  �(�, �) and �(�, �) represents 167 

spatio-temporal variation (additional variation in density for station s and year-quarter t, and for station s and quarter 168 

q, respectively, after accounting for  purely spatial and temporal variation), and �� represents the impact of 169 

covariate � with value ��(�, �) on density for station � and year-quarter �. Spatial variation �(�) is modeled as a 170 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

Gaussian random field (GRF), which reduces to a multivariate normal distribution (MVN) when evaluated at a 171 

finite set of stations (Thorson et al., 2015c): 172 �~���(�,��2 · ��������),        (2) 173 

where  �� is the marginal standard deviation (SD) of spatial variation � and  �������� is spatial correlation for the 174 

random field:  175 ��������(�, �′) = Matérn �|(s−�′)|� �,       (3) 176 

where s and s’ are the location of 2 spatial stations, � defines the rate at which correlations drop with increasing 177 

distance, and Matérn (|(s-s’)|) is the Matérn correlation function, which calculates the correlation between � at 178 

stations s and s’ given their distance |s-s’|. We used the Matérn correlation function because previous research 179 

demonstrated how the probability of GRFs could be calculated efficiently given this assumption (Diggle and 180 

Ribeiro, 2007; Roa-Ureta and Niklitschek, 2007; Lindgren et al., 2011). GRF is a convenient statistical approach 181 

for implementing a 2-dimentional smoother for a response variable (in this case, catch) over spatial dimensions 182 

(Thorson et al., 2015b). The spatial-temporal variation, �(�, �), was modeled by combining the GRF for spatial 183 

variation with first-order autoregressive process for temporal variation at each site: 184 

vec(�)~���(�,��2 · ��������⊗����),      (4) 185 

where vec(�) is the vectorized value of matrix �, �� is the marginal SD of spatio-temporal variation �, ⊗ is the 186 

Kronecker product where if A is an m x n matrix and B is a p x q matrix, then the Kronecker product �⊗� is the 187 

mp x nq block matrix: 188 

 �⊗� = ����� ⋯ ����⋮ ⋱ ⋮���� ⋯ �����,       (5) 189 

and ���� is the temporal component of variance in spatio-temporal variation �: 190 ���1(�, �′) = �|�−�′|,        (6) 191 

where ρ is a parameter governing autocorrelation and |t-t’| is the difference in time among samples in year-quarter t. 192 

The other spatial-temporal variation, �(�, �) was modeled by the same methods as �(�, �).  In the following, we 193 

included a quadratic effect of sea surface temperate, SST (i.e., �� = 2 where �1(�, �) is average SST and 194 �2(�, �) is SST-squared for that station and year-quarter).  We estimated a separate SD for spatial (��) and spatio-195 

temporal (�� , and ��) components, but estimated the same decorrelation distance (�) for the processes, using the 196 
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implicit assumption that dynamics were defined by a “characteristic scale” that defined decorrelation distance for 197 

both. Following the parameterization from Lindgren et al. (2011), we estimated a magnitude parameter � for each 198 

spatial and spatio-temporal process, and the corresponding marginal SD was then calculated as:  199 �� = 1/�4���2,         (7) 200 

where other marginal SDs (i.e.,  ��, and ��) were calculated similarly (from ��, and ��). 201 

Expected catch ��∗ is a function of density and fishing effort �� (number of hooks), ��∗ = �(�� , �� , ��)��, 202 

and was then compared with the observed catch (in numbers) ci for the i-th observation, in station si , year-quarter ti, 203 

and quarter qi

��~������(��∗, ��∗(1 + �1) + ��∗2�2),       (8) 207 

. Count data of the sharks typically include many observations with zero catch and a few observations 204 

with large values when the sharks were aggregated (Bigelow et al., 1999; Ward and Myers, 2005). We used a 205 

negative-binomial distribution: 206 

where NegBin (x,y) is a negative binomial distribution with mean x and variance y (Lindén and Mäntyniemi, 2011). 208 

We used this mean-variance parameterization (rather than more-common versions) so that we can estimate two 209 

parameters (rather than just one) to govern the mean-variance relationship. Parameters representing temporal 210 

variation (d0), spatial covariance (κ and ��), spatial-temporal covariance (��, ��,  ��, and ��), density covariate 211 

(β1 and β2) and residual variation (σ1 and σ2

After estimating the fixed effects (year and quarter, effect of SST, and parameters for the random effects) 220 

by maximizing the marginal likelihood of the data, the distributions for SFM and BSH were predicted from the fixed 221 

and random effects. Average quarterly and year-quarter specific spatial distributions of standardized CPUEs for both 222 

species were compared with those of effort. When visualizing distribution maps in each quarter, we also overlapped 223 

the isoclines of the mean observed SST to examine the relationship between those distributions and seasonal and 224 

annual changes of the mean observed SST. In the following, we presented and interpreted maps of density that 225 

) were estimated as fixed effects while integrating across random effects 212 

representing spatial (station) and spatio-temporal (station and year-quarter, and station and quarter) variations (see 213 

Supporting information). This integral was approximated using the Laplace approximation, and the fixed effects 214 

were estimated using gradient information as provided by Template Model Builder (TMB; Kristensen, 2015), 215 

which is an R package (R Core Team, 2013) for fitting statistical latent variable models to data. It was inspired by 216 

ADMB (Fournier et al., 2012). The details of TMB are described on the website (see http://www.admb-217 

project.org/developers/tmb/, accessed 28 Jan. 2017). Further details regarding GRF estimation can be found in 218 

Thorson et al. (2015b, c).  219 
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include the effect of fixed effects (e.g., temperature) and random effects (e.g., residual spatial variation). We defined 226 

“preferred habitat” as the locations where the predicted catch rate was greater than the mean value of each shark.  227 

Here, the average catch rate for each quarter was calculated as: 228 �̅(�, �) =
15∑ ∑ �(� = �′)�(�, �, �)4�′=15�=1 ,      (9) 229 

where �(�, �, �) is defined in Eq. (1), �̅(�, �) is the average density at location � for quarter � averaged over the 230 

five instances of that quarter within the 20 modeled intervals, and �(� = �′) is an indicator function that equals one 231 

if  the quarter � associated with time-period � is � and zero otherwise, and where we plotted the density relative to its 232 

average for a given quarter: 233 

 �∗(�, �) =
��(�,�)� 1��∑��(�,�)�.        (10) 234 

Model convergence was confirmed using the hessian matrix (confirming that the hessian is positive 235 

definite) and by ensuring that the maximum absolute value of the final gradient of parameters was less than 0.0001. 236 

The changes in predicted catch rates were compared among multiple models (Table 1). We used Akaike 237 

Information Criterion (AIC; Akaike, 1973) to identify which model had greater support given available data: this 238 

model-selection is appropriate given that TMB implements maximum marginal likelihood estimation. We also 239 

interpreted the importance of including or excluding temperature by recording how much the inclusion of 240 

temperature decreases the marginal SD of spatial or spatio-temporal variation.  241 

 242 

RESULTS  243 

The most complicated model (M-12) included purely spatial variation (variation in log-expected density among 244 

stations that was constant over time), spatio-temporal variation among seasons (variation in log-expected density that 245 

varied by quarter), and spatio-temporal variation among all periods (variation in log-expected density for every 246 

combination of quarter and year).  AIC identified this saturated model as the most parsimonious model (Table 1) and 247 

the maximum gradient was less than 0.0001 (the 4.73E-08 for BSH, 1.38E-05 for SFM).  Including the seasonal 248 

component for spatio-temporal variation substantially decreased the marginal SD of spatial and spatio-temporal 249 

variation among all periods (e.g., compare the M-5 (or M-11) with M-6 (or M-12) for two species). We therefore 250 

used the saturated model (M-12) to predict the spatio-temporal maps and to elucidate the seasonal changes of their 251 

preference temperature.  252 

Seasonal changes of the spatial distribution of SFM showed that there was a strong relationship between 253 

the predicted catch rate and SST that resulted in the seasonal pattern of north-south movement (left panels in Fig. 2, 254 

also see the supplementary material). The locations of hotspots were coastal and offshore waters of Japan, and those 255 
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catch rates were high (catch rate 2–5 times the average) in the water of 15–25°C throughout all seasons (left panels in 256 

Fig. 2). For Q1, the predicted catch rates were high (catch rate = 2–3 times the average) in wide ranges of southern 257 

waters (approximately 30–35°N and 140°E –180°). For Q2, the predicted catch rates were high (catch rate = 2–4 258 

times the average) in the coastal waters of Japan, and hotspots appeared along with the Kuroshio-Oyashio TZ (33-259 

37°N and 140–150°E). For Q3, high catch rates (catch rate = 3–5 times the average) were observed in the coastal 260 

waters of Japan (33–40°N and 140–145°E). For Q4, the hotspots (catch rate = 2–3 times the average) appeared in the 261 

offshore areas with an expansion to the southern and eastern waters (30–40°N and 140–170°E). The seasonal pattern 262 

of north-south movement was consistent over the years in our study (Fig. 3).  263 

Unlike SFM, BSH did not show a strong relationship between the predicted catch rate and SST (mid 264 

panels in Fig. 2, also see the supplementary material). In contrast, BSH showed seasonal east-west movement with 265 

a more westward distribution in Q1 and Q2. However, the east-west movement was less consistent over the years 266 

in our study (Fig. 4). The predicted catch rates throughout all seasons were high (catch rate = 2–4 times the average) 267 

in the northern waters, where the SST was 10–25°C (mid panels in Fig. 2). However, the locations of hotspots 268 

varied throughout the western and central North Pacific. For Q1, the predicted catch rates were high (catch rate = 269 

2–3 times the average) in the offshore waters along with the Kuroshio-Oyashio TZ and Mixed water region (30–270 

37°N and 145–163°E) and around the water of Emperor Seamount Chain (35–42°N and 168°E–180°). For Q2, 271 

hotspots (catch rate = 2–4 times the average) were observed in nearly the same areas as those in Q1. For Q3, 272 

hotspots (catch rate = 2–4 times the average) were mainly observed around the water of The Emperor Seamount 273 

Chain (35–40°N and 168°E –180°). For Q4, hotspots (catch rate = 2–4 times the average) were observed in the 274 

offshore waters along with the Kuroshio extension (35–38°N and 148–163°E) and water of The Emperor 275 

Seamount Chain (35–40°N and 168°E–180°). The areas of high fishing effort were not necessarily the same as 276 

areas of high catch rates for both species throughout all seasons (right panels in Fig. 2).  277 

The predicted catch rates (relative value to mean value) against SST showed that the SST associated with 278 

high catch rates (more than 1) varied by season and by species (Fig. 5). The high catch rates of SFM were observed 279 

in the water where the SST was between 9.9°C and 27.0°C throughout all seasons, while the high catch rates of 280 

BSH were observed in the water where the SST was between 6.3°C and 26.5°C (Table 2, Fig. 5). The high catch 281 

rates of SFM in Q1, Q2, Q3, and Q4 were observed in the water where the SST was 9.9–21.8°C, 10.0–21.5°C, 282 

14.9 –27.0°C, and 10.4 –23.8°C, respectively (Table 2). The high catch rates of BSH in Q1, Q2, Q3, and Q4 were 283 

observed in the water where the SST was 6.3–19.1°C, 6.5–20.4°C, 14.9–26.5°C, and 9.4–23.2°C, respectively 284 

(Table 2). These findings indicated that high catch rates of both sharks appeared in similar wide ranges of SST; 285 
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however, the seasonal density plots in Fig. 5 and Table 2 showed that SFM stayed in the warmer water in 286 

comparison with the BSH (i.e. the ranges of SST for SFM was 17.5–21.5°C from the 25–75% quantile and those 287 

for BSH was 13.9–19.8°C). The seasonal density plots also showed that those were negatively skewed for all plots 288 

of both sharks especially for SFM (Fig. 5). These findings suggested that SFM and BSH preferred to stay in the 289 

relatively warmer water in each season, and SFM preferred warmer water than BSH.  290 

SFM were distributed in the southern water around 30–37°N in Q1 and Q2 when the water temperature 291 

was cooler in the northern water around 40°N (left panels in Fig. 2 and Fig. 3). However, the water temperature 292 

experienced by SFM was still cooler in Q1 and Q2 than in the other half of the year (Table 2 and Fig. 5).  By 293 

contrast, BSH stayed in the north throughout the year (mid panels in Fig. 2 and Fig. 4) and therefore experienced 294 

much lower temperatures than SFM during Q1 and Q2 (Table 2 and Fig. 5).  295 

Comparing the predicted density of both species against SST also showed that SFM preferred warmer 296 

water than BSH (see Supporting information).   297 

 298 

DISCUSSION 299 

A clear relationship between the seasonal distribution of the two shark species and SST exists, but the relationship 300 

differed between the two species. SFM preferred the temperate waters of approximately 15–25°C, making 301 

latitudinal movements matching seasonal changes in SST. A similar preferred range in temperatures was 302 

documented by Kai et al. (2015) for juvenile SFM caught by Japanese driftnet and longline fisheries. Casey and 303 

Kohler (1992) documented narrower range of 17–22°C, based on a large tagging study in the western North 304 

Atlantic. Within the preferred temperature, our results showed SFM to be distributed evenly in both coastal and 305 

offshore areas in the western North Pacific. This region is characterized by high productivity, due to the thermal 306 

fronts of the Kuroshio-Oyashio transition zone (Pearcy, 1991; Yasuda et al., 1996; Yasuda et al., 2000; Yasuda, 307 

2003). Fronts where warm water and cold water mix, may cause prey to aggregate at continental shelves, 308 

concentrating predators (Young et al., 2001).  309 

BSH were also found in association with SST. In contrast to SFM, BSH were found in association with 310 

colder water and showed seasonal changes in their spatial distribution in a longitudinal direction. Ohshimo et al. 311 

(2016) reported that the SST at with elevated catch of BSH was colder than those for SFM, and their results were 312 

similar to ours. Our study relied on data from a large-scale fishery, but more direct tagging observations of depth 313 

and temperatures occupied by pelagic sharks has been studied at smaller scales. Musyl et al. (2011) investigated the 314 

movement patterns using pop-up satellite archival tags (PSATs) and showed that BSH and SFM in the Pacific 315 
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Ocean experienced a wide range of temperatures (95% of temperatures occupied were from 9.7–26.9°C and 9.4–316 

25.0°C, respectively). Queiroz et al. (2010) recorded the movements of BSH in the northeastern Atlantic Ocean 317 

using satellite-linked archival transmitters and showed that vertical movements ranged from the surface to a 318 

maximum depth of 696 m, and water temperatures varied from 10.6°C to 24.6°C. BSH also demonstrated a wide 319 

vertical distribution, inhabiting depths from the surface to a maximum of 1160 m and spanning water temperatures 320 

from 7.2°C to 27.2°C (Queiroz et al., 2012). Stevens (2010) studied the movements and behaviour of ten BSH off 321 

eastern Australia and showed that BSH were mainly in 17.5–20.0°C. These results supported the temperature 322 

ranges of SFM and BSH in our study (Table 2).  323 

The spatial fishing effort was distributed in the range of SST (15–25°C) where the mean SST across the 324 

water was lower in Q1 and higher in Q3 (right panels in Fig. 2). The exception of the spatial distribution of fishing 325 

effort in the southern water in Q2 was caused by Japanese shallow-set longliner mainly targeting swordfish in this 326 

area (Hiraoka et al., 2016). The spatial distribution of BSH, which is one of the target species, is supposed to follow 327 

the distribution of the fishing effort, however, this was not observed in Q1 and Q2 (mid and right panels in Fig. 2). 328 

By contrast, the spatial distribution of the predicted CPUEs for SFM followed the spatial distribution of the fishing 329 

effort (left and right panels in Fig. 2). SFM was therefore more sensitive to the changes in the SST than BSH that 330 

resulted in the clear seasonal north-south movement. Our results suggested that latitudinal shifts in fishing effort and 331 

SFM nominal CPUE coincided, but there was no clear relationship between high nominal CPUE and high fishing 332 

effort longitudinally (see Supporting information). This was because the spatio-temporal modeling approach can 333 

reduce the biases of the spatio-temporal distribution of catch rate through the standardization of the nominal CPUE.  334 

Understanding of fishery data is complex (Thorson et al., 2016), which emphasizes the need for properly 335 

accounting for potential biases before drawing conclusions. 336 

The spatio-temporal modeling approach differs from the more commonly used methods of analyzing 337 

fishery CPUE data (Design-based, GLM, GLMM) by explicitly considering the spatial and temporal correlation of 338 

the data (Petitgas, 2001; Shelton et al., 2014; Thorson et al., 2015b). A primary concern is the spatial correlation 339 

associated with regions of high or low abundance. Perhaps the greatest advantage of the spatio-temporal modeling 340 

approach is the ability to estimate density in unsampled regions by imputation (Carruthers et al., 2011). However, 341 

as Thorson et al. (2015b) noted, this method may result in biased estimates when fishing effort is correlated with 342 

population abundance (Diggle et al., 2010). For bycatch species, such as SFM, this may not be a problem, while 343 

BSH may be a problem because BSH is occasionally one of the target species of the Japanese shallow-set 344 

longliners, as previously described. Therefore, the spatio-temporal modeling approach may over-weight data in 345 
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areas with a large amount of data (i.e., areas with targeted fishing) relative to a model that explicitly accounts for 346 

preferential sampling. However, commercial catch and effort data are currently the only source of information to 347 

map spatio-temporal distribution of pelagic sharks in the western and central North Pacific. In addition, the spatio-348 

temporal modeling approach is a better way to reduce the bias and variance caused by the fisheries targeting areas 349 

of high abundance than a nonspatial modeling approach. In future work, large tagging studies in the western and 350 

central North Pacific will be necessary to verify the accuracy of the estimation of the spatio-temporal modeling 351 

approach.  352 

Generalized linear mixed modeling commonly bases the AIC on the marginal likelihood with the 353 

random effects integrated out, which may lead model selection to choose models including more covariates than is 354 

optimal (Greven and Kneib, 2010). Hoeting et al. (2006) demonstrated that the corrected AIC for a spatio-temporal 355 

model was superior to the standard approach of ignoring spatial correlation in the selection of explanatory variables. 356 

However, we used a standard AIC because the corrected AIC is similar to the standard AIC for large sample sizes.  357 

The environmental changes such as an SST can have a large influence on catchability (Stoner, 2004; 358 

Maunder et al., 2006). Several past studies took the impact of environmental variables on the CPUE of blue sharks 359 

into account (Bigelow et al., 1999; Walsh and Kleiber, 2001; Carvalho et al., 2011; Mitchell et al., 2014). 360 

However, the choice of explanatory variables in developing fishery oceanographic relationships depends on the 361 

objectives of the analysis and the spatiotemporal scales of available environmental data, e.g., time-series 362 

measurements or long-term (climatological) averages (Bigelow et al., 1999). Our study used environmental data 363 

(i.e. SST) for 1 x 1 spatial and year-quarter temporal scales to clarify the spatial distribution associated with seasonal 364 

changes in SST.  365 

The method proposed here can identify hotspots of pelagic sharks, and this information is useful not only 366 

for the management of target species but also to reduce the capture risk of bycatch species (Cosandey-Godin et al., 367 

2014; Ward et al., 2015). Time and area closures are one of the effective methods to mitigate the impacts of 368 

bycatch (Dunn et al., 2011; Cambie et al., 2013), and is particularly effective at protecting vulnerable life history 369 

stages without overly constraining a directed fishery.  370 

The marginal SD of spatial random variation of the best model (M-12) went to zero for the SFM and 371 

dropped in half for BSH in comparisons with the model without the station and quarter random effect (M-11) (Table 372 

1). These findings suggested that the station and quarter random effect had a profound implication, particularly for 373 

SFM. The seasonal north-south movement of SFM to maintain a constant range of SST may have a large impact on 374 

the results. When SST terms were included in the models (compare the models M-5 and M-6 with models M-11 and 375 
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M-12 respectively) for both species, the marginal SDs of all random variations dropped for both species, but more for 376 

BSH (Table 1). These findings suggested that spatial-temporal variations for BSH were more influenced by SST than 377 

those for SFM. The seasonal east-west movement of BSH, which is apparently unrelated to SST, may have a large 378 

impact on the results because the mean SST at the high predicted catch rates was more different among seasons for 379 

BSH than for SFM (Table 2).  380 

In this study, we didn’t focus on the annual changes in the abundance index. Calculating the annual 381 

abundance index requires choosing whether the abundance index is calculated based on the average over all 382 

quarters or is derived from a specific quarter. If the seasonal changes in the spatial distribution are not 383 

fundamentally environmentally driven, then it might be reasonable to choose a season when all the fish are in the 384 

area to calculate the index. The seasonal changes in the predicted CPUEs for SFM were more stable than those for 385 

BSH, exemplified by a remarkable peak in predicted CPUE observed in Q 2 for BSH (see Supporting 386 

information). It may be that BSH shifted their spatial distribution to northern areas above 40°N in other seasons 387 

resulting in higher predicted CPUE in Q2 than in other seasons. Based on these arguments researchers attempting 388 

to produce a standardized abundance index of SFM should consider using only a single quarter and for BSH an 389 

average over all quarters. 390 

Spatial and temporal changes in the sex, size and age structure of the population is an important factor in 391 

abundance indexes because blue sharks show evidence of size (Nakano and Nagasawa, 1996) and sex segregation 392 

(ratio of BSH, male:female, 1.00 : 0.34) (Mucientes et al., 2009). Several previous studies (Kristensen et al., 2014; 393 

Nielsen et al., 2014; Thorson et al., 2015a; Jansen et al., 2016; Kai et al., 2017) developed the spatio-temporal 394 

dynamics modeling incorporating the size-structured populations. In this study, however, we did not explicitly 395 

account for the age or length in the estimated species distribution function. Inclusion of the sex and length data into 396 

the model might permit future analyses to estimate size and sex-specific distributions, and we recommend this line 397 

of future research to potentially account for the impact of changes in sex- and length-structure on the distribution for 398 

each species. Additionally, sex- , age and size-specific relative abundance might provide useful information to 399 

understand the life history and stock condition, such as pupping ground, feeding ground and strength of the 400 

recruitment. Moreover, it is possible to show the yearly changes of sex and age-specific spatio-temporal maps, as 401 

well as annual trends of the standardized catch rate by sex and age classes. These maps might provide the 402 

geographical segregation of species by sex, age and size classes from year to year, and the trends of age-0 class 403 

relative abundance might provide the yearly changes of recruitment fluctuation.  404 
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An alternative explanation for the seasonal pattern in spatial distribution is the segregation of size classes. 405 

A schematic BSH migration model suggested by Nakano (1994) demonstrated that the nursery area was located in 406 

the northern areas, and adults mainly occurred in equatorial water to the south of the nursery area. Additionally, it is 407 

reasonable that the parturition and nursery grounds are located in the subarctic boundary, where there is a large prey 408 

biomass for young shark. In particular, the surroundings of The Emperor Seamount Chain and other complex 409 

topography may be the sites of aggregations of many highly migratory species, such as tunas, sharks and marine 410 

mammals that feed on prey aggregations due to high productivity (Boehlert, 1986, 1988). If the migration of the 411 

BSH and SFM in the north Pacific is not determined by physical environmental information such as an SST, but 412 

by yearly migration route programmed a priori and navigated astronomically, the results could be only a pseudo-413 

correlation. We could answer this kind of questions by comparing the year-quarter specific change of the migration 414 

root by using the PSATs in future work. Shifts in fishermen behaviors targeting bycatch species in some seasons 415 

are possibilities. Aires-da-Silva et al. (2008) documented shifting fishing effort toward pelagic sharks occurring 416 

during times of low swordfish abundance in Azorean waters. A similar behaviour has been hypothesized for some 417 

Japanese longliners when the catch rate of swordfish is low.  418 

In conclusion, SFM and BSH changed their spatial distribution by season, possibly in accordance with 419 

changes in the SST, but two species showed different spatial distribution patterns. The hotspots of shortfin mako 420 

(SFM) appeared in the vicinity of the coastal and offshore waters of Japan along with Kuroshio-Oyashio transition 421 

zone (TZ), while the hotspots of blue shark (BSH) were widely distributed in the areas from the TZ to the water of 422 

The Emperor Seamount Chain. SFM fundamentally changed their seasonal distribution latitudinal direction 423 

between north and south and maintained higher SST than BSH, while BSH fundamentally changed their seasonal 424 

distribution longitudinally between east and west in the northern water which apparently unrelated to SST and 425 

maintained lower SST than SFM. SFM plainly prefer to stay in slightly higher SST around 18–22°C, while BSH 426 

prefer to stay in slightly lower SST around 14–20°C. The spatial fishing effort by season generally follows the 427 

seasonal movement of temperature possibly making SFM more vulnerable to the fishery than BSH. These findings 428 

could be used to reduce the capture risk of bycatch sharks and to better manage the spatial distribution of fishing for 429 

targeted sharks. 430 
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Tables 648 

Table 1. Summary of the model selection information for two species from twelve analyses, including the catch rate 649 

predictor as random effect and sea surface temperature (SST), the number of parameters, the deviance, the 650 

reduction in AIC (ΔAIC) from the best-fitting model, maximum gradient, marginal standard deviation (SD) of 651 

spatial variation and spatio-temporal variations. M-7 for shortfin mako, M-7 and M-10 for blue shark were not 652 

converged and not shown in the values (grey rows).  653 

 654 

 655 

 656 

Table 2. Quantiles of sea surface temperature (°C, where 50% is the median temperature, 0% is the lowest 657 

temperature, and 100% is the highest temperature) of the preferred habitat of shortfin mako and blue sharks 658 

(defined as locations where the predicted catch rate relative value to mean value of each shark was more than 1.0).  659 

  Sea surface temperature (°C)     

SpeciesModelCatch rate predictors of random effect (RE)
Number of
parameters

Deviance ΔAIC
Maximum
gradient

Marginal SD
of spatial
variation

Marginal SD
of spatio-
temporal
(year-quarter)
variation

Marginal SD
of spatio-
temporal
(quarter)
variation

Shortfin mako

M-1 Null 22 16706 831 < 0.0001

M-2 Station 24 16374 503 < 0.0001 0.706

M-3 Year-quarter and station 25 15937 69 < 0.0001 0.925

M-4 Station + Quarter and station 26 15987 120 < 0.0001 0.001 0.945

M-5 Station + Year-quarter and station 26 15921 54 < 0.0001 0.320 0.844

M-6 Station + Quarter and station + Year-quarter and station 28 15875 13 < 0.0001 0.0003 0.655 0.547

M-7 SST 24 0.578

M-8 Station + SST 26 16273 407 < 0.0001 1.251

M-9 Year-quarter and station+ SST 27 15913 49 < 0.0001 0.888

M-10 Station + Quarter and station + SST 28 15974 112 < 0.0001 0.001 0.956

M-11 Station + Year-quarter and station + SST 28 15898 35 < 0.0001 0.314 0.811

M-12 Station + Quarter and station + Year-quarter and station + SST 30 15858 0 < 0.0001 0.00004 0.646 0.512

Blue shark

M-1 Null 22 31195 2383 < 0.0001

M-2 Station 24 29437 629 < 0.0001 1.024

M-3 Year-quarter and station 25 28910 104 < 0.0001 1.100

M-4 Station + Quarter and station 26 29105 302 < 0.0001 0.433 0.972

M-5 Station + Year-quarter and station 26 28844 41 < 0.0001 0.567 0.764

M-6 Station + Quarter and station + Year-quarter and station 28 28812 13 < 0.0001 0.237 0.627 0.616

M-7 SST 24 0.009

M-8 Station + SST 26 29425 621 < 0.0001 0.821

M-9 Year-quarter and station+ SST 27 28889 87 < 0.0001 0.966

M-10 Station + Quarter and station + SST 28 0.012

M-11 Station + Year-quarter and station + SST 28 28824 24 < 0.0001 0.471 0.722

M-12 Station + Quarter and station + Year-quarter and station + SST 30 28796 0 < 0.0001 0.200 0.608 0.527
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  0% 25% 50% 75% 100% 

Shortfin Mako 
     

 Quarter 1 9.9 16.3 17.8 19.0 21.8 

 Quarter 2 10.0 16.8 18.6 19.7 21.5 

 Quarter 3 14.9 20.3 22.7 24.9 27.0 

 Quarter 4 10.4 18.1 20.5 22.5 23.8 

 All quarters 9.9 17.5 19.2 21.5 27.0 

Blue shark 

      Quarter 1 6.3 11.5 13.8 15.8 19.1 

 Quarter 2 6.5 12.8 14.7 16.9 20.4 

 Quarter 3 14.9 19.8 21.8 23.6 26.5 

 Quarter 4 9.4 16.1 18.1 20.1 23.2 

 All quarters 6.3 13.9 16.7 19.8 26.5 

 660 

 661 

Figure Legends 662 

 663 

Fig. 1. Map of schematic Kuroshio (warm water) and Oyashio (cold water) currents, Kuroshio-Oyashio Transition 664 

Zone (TZ), Mixed water region between subarctic current and Kuroshio extension, and Emperor Seamount Chain 665 

in the western and central North Pacific.  666 

 667 

Fig. 2. Seasonal changes of the spatial distributions of predicted catch rate relative its average for shortfin mako and 668 

blue shark (left and mid figures).  Contours denote the isothermal lines of sea surface temperature (°C). We also 669 

plot the number of hooks (logscale), representing the distribution of available data (right figures).  670 

 671 

Fig. 3. Time (year-season) specific changes of the spatial distributions of predicted catch rate relative its average 672 

(logscale) for the data of shortfin mako. Contours denote the isothermal lines of sea surface temperature (°C) and 673 

blue, green, orange, brown, and red lines indicate 5°C, 10°C, 15°C, 20°C, and 25°C, respectively. The figures were 674 

plotted using the values derived from Eq. (1). 675 

 676 
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Fig. 4. Time (year-season) specific changes of the spatial distributions of predicted catch rate relative its average for 677 

blue shark. Contours denote the isothermal lines of sea surface temperature (°C) and blue, green, orange, brown, and 678 

red lines indicate 5 °C, 10 °C, 15 °C, 20 °C, and 25 °C, respectively. The figures were plotted using the values derived 679 

from Eq.(1). 680 

 681 

Fig. 5. Seasonal changes of predicted catch rate (relative value to mean value, such that the dashed line at 1.0 682 

represents the mean catch rate) against mean SST (sea surface temperature) (°C ), for shortfin mako and blue shark 683 

with marginal density plots showing the distribution of temperature in preferred habitats (defined as locations 684 

where the catch rate was greater than the mean). A point in the bottom row indicates each station in each quarter 685 

(where quarters are color coded).686 
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